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Line source distributions and slender-body theory 

By JOHN P. MORAN 
Tlierm Advanced Research, Ithaca, New York 

(Received 18 December 1963 and in revised form 2 May 1963) 

A systematic procedure is presented for the determination of uniformly valid 
successive approximations to the axisymmetric incompressible potential flow 
about elongated bodies of revolution meeting certain shape requirements. The 
presence of external disturbances moving with respect to the body under study 
is admitted. The accuracy of the procedure and its extension beyond the scope 
of the present study-e.g. to problems in plane flow-are discussed. 

1. Introduction 
Slender-body theory is one of the most useful analytical tools available to 

fluid dynamicists, since it yields closed-form approximate solutions to many 
problems of practical importance. The theory originated in Munk’s (1924) 
analysis of the lateral flow past elongated bodies of revolution. Munk postulated 
that the flow past any cross-section is approximately independent of that past 
any other, and used two-dimensional theory to determine the cross-flow a t  each 
station. Later, von K6rmBn (1927) treated the same problem by distributing 
along the body axis doublets oriented normal to the axis. Still later, Munk 
(1934) showed the two approaches to be equivalent for slender bodies to a first 
approximation. 

The first to apply slender-body theory to axisymmetric flow problems was 
Weinig (1938), who employed axial distributions of doublets aligned with the 
axis. Munk (1934), using axial source distributions, obtained equivalent formulas. 

Subsequently, second-order theories (Van Dyke 1954, 1959) and other modi- 
fications were introduced to improve the accuracy of the slender-body theory. 
However, these also depend on the use of axial singularity distributions. Although 
Vandrey (1951) and Landweber (1951, 1959) were able to simplify the surface- 
singularity-distribution approach somewhat by using slender-body-type approxi- 
mations, their resultant iteration procedures are still too complex to yield results 
in closed form. 

It thus appears that the analytical virtues of slender-body theory are in- 
extricably tied up with the use of axial singularity distributions. The present 
attempt to approximate the axisymmetric flow past elongated bodies of revolu- 
tion is, therefore, based on the distribution of sources along the body axis. 

The study is restricted to bodies whose ends are parabolic (blunt with finite 
radius of curvature), and whose cross-sectional area distribution is expandable 
about the stagnation points in power series which converge over the entire length 
of the body. It has been shown (Moran 1961) that line source distributions are 
most likely to yield closed-form results under these restrictions. 
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The integral equation governing the source strength is inverted by a technique 
based on that developed by Landweber (1951). Thus, in $9 3.1 and 3.2, separate 
successive-approximation procedures are set up for determining sequentially 
the extent and the form of the source distribution. 

These procedures are applied in $ 3.3 to obtain a general formula for the second 
approximation to the source strength. Use of this formula yields an approxi- 
mation to the flow field about bodies of the type described above which is uni- 
formly valid to second order in the perturbation parameter 7 2 ,  r being the body 
thickness ratio. This establishes the applicability of axial source distributions 
to such bodies, in the sense that the technique yields at  least an asymptotic 
expansion of the exact solution powers of r2.  Unfortunately, the ability of our 
analysis to yield terms in this expansion beyond the second term, without 
further restrictions on the body shape, is not rigorously established, nor is the 
convergence of the procedure. 

Our second approximation for the source strength differs from the corre- 
sponding result of formal slender-body theory (Van Dyke 1959) only in the 
extent of the distribution. In  the formal theory, the sources extend to the ends 
of the body, thus inducing spurious singularities at the stagnation points. We 
instead introduce gaps between the ends of the distribution and the stagnation 
points, and take care to determine the correct extent of the gaps ($3.1).  This 
suggests a technique for rendering formal slender-body theory uniformly valid, 
which may be applicable outside the scope of the present research. In problems 
where the formal solution consists of singularities distributed along some mean 
surface or line, one may be able to construct a uniformly valid solution simply 
by predetermining the proper extent of the distribution with a method like that 
of $ 3 . 1 .  

From comparisons with exact solutions, it  is shown in $4 .3  that the second 
approximation is sometimes sufficient for practical purposes. However, there 
also exist cases, within the class of body shapes studied, for which the successive 
approximations converge rather slowly, and perhaps only asymptotically as 
r 3 0. It is tentatively suggested that such cases may be identified by examining 
the expansions in r2 of the gaps between the ends of the source distribution and 
the ends of the body, the first five terms of which are given explicitly in $ 3.1. 

In  $4.4, the approach developed in $93.1 and 3.3 for treating steady, un- 
bounded flows about isolated bodies of revolution is extended to a class of 
unsteady interference problems, in which the presence of external singularities 
moving with respect to the body under study must be considered. 

Many of the results presented in this paper were previously published in a 
Therm Advanced Research report (Moran 1062), to which we shall refer as I. 

2. Formulation 2.1. Scope of study 

Our subject is the axisymmetric flow of a perfect fluid about a slender body of 
revolution. We shall use body-fixed cylindrical co-ordinates (2, r )  with origin 
at the body nose, as shown in figure 1. The flow far from the body is uniform, and 
is directed along the positive x-axis with speed U.  Initially, it  will be supposed 
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that the body is isolated. This restriction will be removed in Q 4.4 to permit the 
consideration of certain unsteady interference problems. 

The body shape is defined by r = R(x) ,  and its length is set equal to unity. 
The maximum diameter of the body is then 7, the thickness ratio. We require 
that the ends of the body be blunt with finite radius of curvature, and that the 

L-7 

FIGURE 1. Co-ordinat,es and nomenclature. 

cross-sectional area distribution X(x) be expandable about the stagnation points 
in power series which converge over the entire body length 

W m 

X(x) = 7rB2(x) = 7r c u,xn = 7r 2 b,( 1 - x)". (2.1) 
1 1 

For the series (2.1) to converge in the interval 0 < x < 1, the coefficients a,n, 
and b, must all be of the same order of magnitude. Since R2 is of order r2, we 
therefore require 

We further stipulate that the leading coefficients of the series (2.1) are not zero 
or of order 74,  although such conditions would satisfy (2 .2 ) ;  a, and b, may be 
neither small nor large compared with r2. Since a, and b, are twice the radii of 
curvature of the nose and tail, respectively, this stipulation simply strengthens 
our restriction that the ends of the body be blunt; the order of magnitude of the 
radius of curvature, which is a measure of the bluntness, is now required to be 
the maximum consistent with equation (2.2). 

a,n, b, = O(rP). (2.2)* 

2.2. Basic equations 

It is assumed that the flow is incompressible and irrotational. The problem is 
then conveniently formulated in terms of a velocity potential @, whose gradient 
yields the velocit,y field, and which gives the pressure field through Bernoulli's 
equation. 

must satisfy Laplace's equation everywhere in the flow 
field outside the body. If the analytic continuation of the potential across thc 

* In  the way of nomenclature, for any 12, including zero, y = O ( T ~ )  means that as 7 + 0, 

From continuity, 

(y/+) is less than some finite constant, while y = 0(+) rneans that ( y / ~ ~ )  + 0 as 7 + 0. 
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body surface is free from singularities except on the axis, the potential may 
be written 

(3.3) 

The first term in (2.3) is the potential of a uniform flow in the x-direction, while 
the second is the potential of a distribution of sources along the x-axis in the 
interval (a, p). The quantity Uf(x) is the strength per unit length of the dis- 
tribution, the strength of a source being defined as the volume rate of flow across 
any surface enclosing the source. 

Since the velocity due to a source is infinite at  the source, the distribution must 
be confined within the body, and there must generally be finite gaps between 
the ends of the distribution and the stagnation points; i.e. a > 0 and /3 < 1. 
Then the source-induced velocities vanish at  infinity, and the potential (2.3) 
automatically satisfies the boundary condition of uniform flow at infinity. 

The potential must also satisfy a flow-tangency condition on the body surface 

Q r -  @$'(x) = 0 on r = R(s), (2.4) 

where the subscripts indicate partial differentiation. Substituting in (2.4) for 
@ from (2.3), we multiply the resultant expression by R(x), and integrate over r. 
The constant of integration is evaluated a t  x = 0, using the fact that the net 
source strength associated with a closed body must be zero 

(2 .5)  

From these manipulations we obtain the integral equation governing the source 

(3.6) 

(2.7) 

Since the flow is axisymmetric we may also work in terms of the Stokes stream 
function 'Y, related to @ by 

1 I 
r r x' 

Qz = -Yp, = --Y (2.8) 

By definition, &he stream function is constant on streamlines of the flow. The 
integral equation (2.6), in fact, simply says that on the body surface, 

'Y(x,R(z)) = 0. (3.9) 

2.3. Outline of solution 
In  inverting the integral equation (2.6) for the source strength, we shall follow 
Landweber (1951) by determining separately the extent and the functional 
form of the distribution. These two tasks require different approaches, which 
may be pursued sequentially. To find the gaps between the ends of the distribu- 
tion and the stagnation points, we employ a successive-approximation pro- 
cedure based on power-series expansions. Once the extent of the distribution 
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is known, its form can be determined by iterative solution of the integral equa- 
tion. Both procedures depend heavily on the assumed slenderness of the body, 
the results being expressed as expansions in even powers of the thickness 
ratio, r .  In  the analysis, certain assumptions will be made regarding the form of 
the source distribution. The validity of these assumptions will be discussed 
in $ 4 . 1 .  

3 m  
3.1. Determination of extent of distribution 

We expect that errors in the determination of the extent of the source distribu- 
tion lead to  vioIations of the body boundary condition which are most serious 
near the ends of the distribution. To emphasize these regions, the procedures 
for calculating the end-points of the distribution are based on power-series 
expansions of the integral equation (2.6) about the stagnation points. Thus, 
the equations governing a, the gap between the nose and the leading edge of the 
distribution, are obtained by expanding the kernel of (2.6) in a power series about 
the nose, substituting for RZ its expansion (2.1) in x, and equating coefficients 
of like powers of x. The coefficients of 2 0  simply reproduce equation (2 .5) ,  which 
is unimportant in the determination of a.* By equating the coefficients of the 
next six higher powers of x we obtain 

(3 .1 )  
( 3 . 2 )  

(3 .3 )  

0 = #(4a,-a;-a1a,)14+a1(3-3a2)15 

0 = #(4a3 - 2a2 a, - u1 a4) I4 + (2a, - +a; - 3a1 a,) I, 
-+ , (4 -a , ) I6+  1 5  2 lga;I,-$&%:18, (3.4) 

+~~al(8-22.1a,+3a~+3ala,)  1 6 - ~ ~ a ~ ( 4 - 3 u 2 ) I ,  

0 = #(4a4 - a: - 2a, a4 -alas) I, + (%I, - 3a2a, - 3a1u,) & 
+ s$a!(6 -a,) I, - $$a;Ig + 110, (3 .5 )  

+ &( 8a, - 12a; - 24a1 a, + a: + 3af a4 + 6a1 a2 a3) I6 

- ~ ~ a ~ ( 2 4 - 3 6 a , + 3 a ~ + 2 a 1 ~ , ) I 8 + ~ ~ a ~ ( 2 - c r 2 ) I g  

+ #al( 8 - 40a2 + 1 5 4  + 1 5a1 a3) 1, 

----a 3 1 5  2 5 6  4 1 ( 8 - a 2 ) I l O + $ 3 5 I  98 1 11 -Zj-l-a6I 1 0 2 4  1 122 (3.6) 

where we have defined the functional of the source strength 

(3 .7)  

We now assume that the source strength f is expandable in power series about 
the stagnation points 

m m 

n=O ?Z=O 

for our present purposes, while the contribut,jon of a to equation (2 .5)  is of order r4. 

f(x) = s c,xn = 2 d , ( l  -xp. (3 .8 )  

* As we shall see below, the integral equation (2.6) need be satisfied only to order ra 

19 Fluid Mech. 17 
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It is also assumed that the radii of convergence of these series are of order unity. 
Then all the coefficients c, and d, are of the same order in 72. Specifically, c, 
and d, are of order 72, since f = o(+), as may be deduced by examination of the 
integral equation (2.6). As was the case with a, and b, in equation (2.1), we further 
assume that the leading coefficients of the series (3.8), co and do, are neither small 
nor large compared with r2. 

With these assumptions we are precluding the possibility of discontinuities 
in the source strength (or in any of its derivatives) and, in particular, the presence 
of discrete sources near the ends of the distribution. The assumptions are not so 
strong, however, that such discontinuities or discrete singularities are com- 
pletely inadmissible; all that is required is that their distances from the ends of 
the body be of the order of a body length. That is, equations (3.8) need represent 
f only in regions near the stagnation points whose lengths are of order unity. 

Now when 6 = O(l ) ,  the integrand of the functional Ik defined in equation 
(3.7) is of order 7 2 .  Therefore, the contribution to Ik of that part of the source 
distribution which, in accordance with the above remarks, is not described by 
equation (3.8) is also of order 7 2 .  Further, anticipating that a and 1 - j3 are small 
for slender bodies, we may simplify the contribution to equation (3.7) of that 
part off which is described by (3.8) with the result 

a l - k  a2-k 1 
4774 = E c o + m c l +  ... +-ck- ,+o( rO) .  a 

Using (3.9) we may now write equation (3.1) as 

1 a1 a, = - - co + o(r2). 
4n a 

(3.9) 

(3.10) 

Since, by assumption, a, and co are neither small nor large compared with 72, 

equation (3.10) shows that a must behave similarly 

1 
a = o(r2), - = o(') 

a 
(3.11) 

More specific information on a is obtained from equation (3.2), which may be 
simplified with the help of (3.9) to 

-2 ; z2 [ I---- ; :] Co + : [ 1 - ; :] c, = o(r2). (3.12) 

Since the second term on the left side of (3.12) is of order T ~ ,  so must be the first 
term, which implies that 

U . ~ / L X  = 4+0(1).  (3.13) 

To find a more accurate approximation for a we write 

nl/a = 4 + B. (3.14) 

In  the equation formed by substituting (3.9) and (3.14) into (3.3), the term in- 
volving co appears to be of order unity. As in equation (3.12), this cannot be so, 
since the terms involving c,, (n + 0 )  are of order 7 2 ,  while the sum of all the terms 
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must be of order r4.* Thus requiring the term which involves c,, to be of order r2 
we determine B to order 7 2 .  

This same procedure was applied in succession to equations (3.4), (3.5)) and 
(3.6), so that al/a was determined to a fifth approximation. Solving the resultant 
expression for a, we have 

a = la - L a  a 
4 1 1 6  1 2 6 4  1 3+Sa la i )  

- ___ 2 6 (a: $- 7a?a,a, + h l a ; )  

+ i$x(at a5 + 10a: a,2 a4 + 6a:aE + 3 7 4  a: a3 + 14a1 a:) + o(7lo). (3.15) 

The determination of /3 proceeds along similar lines, with the various power- 
series expansions centred about x = 1. Because of the reversibility of axisym- 
metric incompressible irrotational flow, the form of the expression derived for 
(1 -/3) is identical with that of equation (3.15). Thus 

1-p = l b  4 1 :tjbib2+.*., (3.16) 

where the b,’s are the coefficients of the power-series expansion of R2 about the 
tail, see equation (2.1). 

The first to note the importance of correctly fixing the extent of the singu- 
larity distribution was Fliigge-Lotz (1931), who suggested a procedure based on 
Taylor-series expansion of the governing integral equation about the stagnation 
points. This is essentially the approach devised independently by Landweber 
(1951) and followed here. 

The most significant difference between the present procedure and that of 
Landweber is the choice between sources and doublets for the axial singularity 
distribution. Since each jump discontinuity in a distribution of doublets corre- 
sponds to the presence of a discrete source, such a distribution can, in principle, 
represent a wider class of bodies than can a piecewise-continuous axial source 
distribution. But as exemplified by the half-body created by a point source in 
a uniform flow (see Landweber 1951, for example), if a discrete source appears 
near the end of the distribution, the specification of the body shape is generally 
complicated by the fact that the power-series expansion of R2 about the nose 
converges only in a limited region near the nose. 

A further difference between Landweber’s procedure and that employed here 
is our use of order-of-magnitude arguments, which avoids the necessity for 
truncating equations like (3.10) and (3.12) arbitrarily, and for finding a by 
solution of a determinantal equation. Nevertheless, had Landweber stipulated 
that the doublet strength vanish at the ends of the distribution, as would be 
necessary to preclude the presence of point sources there, his results would agree 
with ours. As it is, under restrictions on the body shape similar to those set forth 
here in $2.1, he finds a correctly only to a first approximation (I). For practical 
purposes, however, Landweber’s determination of a seems to be sufficiently 
accurate (see gg3.3 and 4.3 below). A similar comment applies to certain analyses 

* Actually, of order r4 In 7z.  For brevity, this distinction will often be ignored in the 
text, but t.he equations will be made rigorous by using the sinall o notation. 

19-2 
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(see I for bibliography) in which the source distribution was terminated a t  points 
midway between the stagnation points and the centres of curvature of the body’s 
extremities. This choice, which agrees with equations (3.15) and (3.16) to a 
first approximation, was based on the known exact solution for the prolate 
ellipsoid of revolution. 

3.3. Determination of form of source distribution 

Again following Landweber, we now seek to determine the functional form of 
the source strength by iterative solution of the integral equation (3.6). We 
consider first the following generalization of that equation 

G ( 4  = 9(5) (x - 5) {(. - o2 + R2(41-& d5. (3.17) 1: 
It is convenient to differentiate (3.17) with respect to x 

G’(x) = IaPg(S) [R2(x ) - - f ( x - -5 ) z (x ) ]  dR2 [ ( ~ - [ ) ~ + R ~ ( x ) ] - + d < .  (3.18) 

This facilitates an approximate solution for g suitable for slender bodies, since 
the integrand of (3.18) tends to peak near 5 = x if R2 is small, while the kernel 
of (3.17) is of order unity no matter how slender the body is. 

We assume that the first two derivatives of g exist for a < x < p, so that in 
that interval, from Taylor’s expansion formula with remainder, 

9(5) = g(x)  + (5 - 4 9’W + 2 (5 - X I 2  g”(x,) (3.19) 

for some x, in (a ,  p). We also assume that, over the entire length of the distribu- 
tion, g’ and g” are of the same order of magnitude in 7 2  as is g. Then, substituting 
for g(5) in equation (3.18) from (3.19) we find 

1 dR2 
G’(x) = g(x) p - x - - __ (5)) {(p - x ) ~  + R2(x)}-$ “ 3 ax 

{ ( Z - U ) 2 + R 2 ( ~ ) } - *  + O ( g ) *  (a  < x < p). (3.30) 1 
Now when x 9 a, it is clear that 

{(x - + R’(x))-& = 1 + O(T’). 
2 ax 

(3.21) 

It may not be obvious that this relation also holds when x is small. To show this, 
we suppose that x = 0(-r2). Then, using equations (2.1) and (3.13), we may 
approximate the terms on the left side of (3.21) by 

* In identifying t’he remainder term as being o(g)-i.e. as being vanishingly small 
compared to g as T + 0-the expansions in T~ developed in the Appendix for certain 
radicals and logarithmic terms are useful. 
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Thus equation (3.21) is valid for all x of interest. A similar relation holds for 

(3.23) 

the other term in the square brackets of (3.20), which may then be written 

G'(x) = g ( x )  [ 2  + 0(7O)]. 

g(x)  = &a'(%) [I +o(T")]. 

Therefore, the approximate solution of equation (3.17) is 

(3.24) 

This approximation is uniformly valid, in that the error is of the indicated order 
over the entire interval a < x < p. 

I n  order to apply equation (3.24) to the iterative solution of (2.6), we define 
an nth approximation to the source strength, fn(z), such that 

f(4 - f i ' ( 4  = o(721L) (3.25) 

over the entire length of the distribution. Since f = O(?) it is consistent to 
define fo = 0. 

Suppose that fn-l is known. Since the kernel and integration interval of 
equation (2.6) are both of order unity, we may write that equation as 

P 
2S(4 - fn-l(k-) h'(? k-) a+ 0(72'L) = imp [f,(5) -fn-l(k-)l h'k, 5) 

f,(4 = f i L - 1 ( 4  + X ' ( 4  - 2 J f iL-1(5)  KJJ,., k-) dk-j 

(3.26) 

From equation (3.25), the right side of (3.26) is of order +. Comparing equations 
(3.17) and (3.26), we then use (3.24) to write the solution of (3.26) as 

(3.27) 
1 P  

where, as is permitted by (3.25), we have ignored terms of order T ~ ~ ~ + ~ .  

Setting f o  = 0 in (3.27), we find the first approximation to f, 

(3.28) 

It is noteworthy that equation (3.28) is identical with the familiar result of formal 
slender-body theory. Substituting (3.28) into (3.27), we may determine the 
second approximation to the source strength, f,, and so on ad inJinitum. 

The first attempt to solve the axial-singularity-distribution problem by itera- 
tion on the governing integral equation was made by Weinig (1928). However, 
his successive approximations diverged, apparently because he allowed the 
singularity distribution to extend to the ends of the body (I). 

Landweber's (1951) analysis does not, of course, suffer from this defect. The 
equation he derived for the iterative calculation of the doublet strength is 
identical in form with our equation (3.27). However, it is not inherently as 
accurate. I n  its derivation, terms similar to those in the square brackets of our 
equation (3.20) must be approximated by constants, which approximation can 
be shown to be invalid near the ends of the distribution (contrast our equations 
(3.21) and (3.22)). 

In  particular, Landweber's first approximation for the doublet strength is 
simply the slender-body result, S(x) ,  which allows the strength to be non- 
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vanishing at  the ends of the distribution. Actually, Landweber predetermined 
the doublet strength at  the ends of the distribution with a series-expansion pro- 
cedure, and modified his iteration scheme accordingly. However, it  can be shown 
(I) that Landweber's formula for the terminal value of the doublet strength is 
accurate only to first order, as is his determination of the extent of the singularity 
distribution (3 3.1). Strictly speaking, then, Landweber's iterative solution is 
uniformly valid only to a first approximation. But since his iterations are 
intended to be carried out numerically, and since the errors of his first approxi- 
mations for the distribution extent and for the terminal values of the doublet 
strength are extremely small numerically, Landweber's procedure yields quite 
satisfactory results for such quantit)ies of interest as the body surface pressure 
distribution (see $4.3).  

3.3. Second-order source strength 

It is convenient a t  this point to apply the iteration procedure described above 
to determine the second approximation to the source strength. According to 
equations (3.27) and (3.28), 

f 2 ( x )  = 2X'(x) + J ' (x) ,  (3.29) 

In  view of the restrictions on the body shape set forth in 3 2.1, S'(5) is analytic, 
and so may be expanded in a Taylor series about x. Then, 

where Sk) (x )  denotes the kth derivative of S with respect to x, and 

(3.3;') 

A straightforward evaluation of the integrals H, would lead to the inclusion 
iiifZ of terms of order r6 and higher. The simplifications of these integrals required 
to avoid these extraneous terms are outlined in the Appendix. Using the results 
derived therein, we find the following general formula for the second approxi- 
mation to the source strength 

where hk(x) E (1 - z ) ~  + ( - x ) ~ .  (3.31) 

4.1. Validity o j  assumptions 4. Discussion 

In principle, the source strength can be determined to arbitrarily high order 
in r2 by repeated application of equation (3.27). Unfortunately, the requisite 
integrations soon become almost hopelessly complex. We have not even been 
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able to derive a general formula for f3 in closed form, most of the difficulty being 
due to the presence of the logarithmic term in the result for f 2 ,  equation (3.33). 

Our lack of a closed form result for f ,  for n arbitrarily large precludes a dis- 
cussion of the convergence of our procedure. Thus we must admit the possibility 
that, for some bodies within the class defined in $ 2.1, the successive approxima- 
tions yield only an asymptotic expansion of the solution in r2. Moreover, we are 
unable to verify the several assumptions made in the derivations of $9 3.1 and 
3.2 on the behaviour of the source strength. Thus these assumptions may imply 
restrictions on the shapes of bodies to which our procedures are applicable which 
are more severe than those delineated in $ 2.1. 

On the other hand, it is not difficult to show that, within the restrictions of 
52.1, our second approximation to f does behave as assumed. The first-order 
part of equation (3.33) is analytic all along the body axis, and all its derivatives 
are everywhere of order 7 2 .  The second-order part is also analytic for 0 < x < 1, 
while all its derivatives are of order r4 in this interval. Also, the leading terms of 
the power-series expansions of f2 about the stagnation points are neither small 
nor large compared to 72, and the radii of convergence of these series are of order 
unity. 

Let us then consider the function Q2(x,r)  (say) formed by substituting in 
equation (2.3) for a, /3, and f their second approximations from equations (3.15), 
(3.161, and (3.33), respectively. This function exactly satisfies the Laplace equa- 
tion and the boundary condition at  infinity. Also, for bodies shaped as described 
in $2.1, the error term obtained when Q2 is substituted into the body boundary 
condition (2.4) is of order r4 smaller than that of the zeroth approximation to Q, 

(no sources) over the entire length of the body. To show this, note that the 
product of (2.4) and R is the x-derivative of the integral equation (2.6)) and use 
equations (3.17)-(3.33). Thus our second approximation to the source strength 
yields an approximation to the potential which is uniformly valid to second 
order in r2 throughout the flow field about a body of the type considered, regard- 
less of whether or not our procedures are capable of yielding higher upproximations. 

This establishes the applicability of axial source distributions to bodies 
meeting the restrictions of § 2.1, in the sense that the technique yields at least an 
asymptotic expansion of the exact solution in even powers of the thickness ratio. 
To be sure, we can claim only to have found the first two terms of the expansion. 
But since there is no reason to believe that the behaviour of higher approximations 
to f differs from that of f2 ,  it seems plausible that our procedure could yield 
higher-order terms of the expansion as well. 

4.2. On rendering slender-body theory uniformly valid 
The starting point of the usual derivation of slender-body theory is the small- 
disturbance assumption that the perturbation velocity components - U and 
Or are everywhere small compared to the speed U of the oncoming flow. Because 
this assumption is invalid near stagnation points, a theory based thereon is only 
formally correct near such points, and, as is well known, yields grossly inaccurate 
results for the pressure distribution near the ends of the body. 

Using axial source distributions, and confining his interest to the flow in the 
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immediate vicinity of the body, Van Dyke (1969) derived a formal second-order 
slender-body theory. As shown on the right half of figure 2, the theory yields 
surface pressure distributions C,(x) which diverge even more strongly near 
stagnation points than do the first-order results. Moreover, if, as in the case on 
which figure 2 is based (ellipsoid of revolution), the ends of the body are blunt, 
comparisons with exact solutions show the formal second-order theory to be in 
error by terms of order r4 even away from the stagnation points. 
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I ---- First approximation I 

J --- Second approximation I 
I 
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FIGURE 2.  Comparison of varions approximations to  pressure distribution 
on prolate ellipsoid of revolution with cxact solution. T = 0-2. 

It is of interest to compare the present uniformly valid results with those of 
formal slender-body theory. It can be shown (I) that the linearized result for 
the distribution of the axial velocity component along the body surface can be 
brought into agreement with our first-order result by subtracting the singular 
terms and multiplying the remainder by a corrective factor. This is highly remin- 
iscent of Lighthill’s (1 951) rule for rendering thin-airfoil theory uniformly valid. 

Of more fundamental importance is the comparison of the singularity strengths. 
As already noted, our first approximation for the source strength (3.28) is 
identical in form with the familiar slender-body formula. Surprisingly, we find 
that equation (3.33) also agreesin functional form with Van Dyke’s (1959) formal 
second-order result. The only difference between the two distributions is in their 
extent. Whereas in formal slender-body theory the distribution is allowed to 
extend to the ends of the body, we have admitted the presence of gaps between 



Slender-body theory 297 

the ends of the source distribution and the stagnation points, and have taken 
care to determine the correct extent of the gaps. Thus it appears that the errors 
of the formal theory, even in its second-order version, are due solely to the neglect 
of these gaps. 

It is suspected that this conclusion may also hold outside the scope of the 
present research. We thus propose the following rule for rendering small-per- 
turbation theory uniformly valid: before attempting to find the strength of the 
singularity distribution, predetermine its extent. To do so expand the governing 
integral equation in power series about the stagnation points, in the manner 
suggested by Flugge-Lotz (1931), developed by Landweber (1951), and followed 
here in 5 3.1. 

To be sure, the efficacy of such an approach would depend on the body shape ; 
in the present case, we had to restrict ourselves to bodies with parabolic ends. 
However, within such limitations, we expect this rule to be applicable to any 
problem in which the linearized solution consists of singularities distributed 
along some mean surface or line. To support this claim, we note that Flugge- 
Lotz’s (1931) suggestion was made in conjunction with the lifting problem for 
bodies of revolution. Moreover, Macagno (1962) has shown that the axial (two- 
dimensional) source distribution associated with an elliptic cylinder according 
to thin-airfoil theory does indeed generate a stagnation streamline in the shape 
of an ellipse, with foci at the ends of the distribution. Finally, our conjecture is 
consistent with Lighthill’s (1951) interpretation of his thin-airfoil result: ‘the 
velocity field obtained by a straight-forward expansion in powers of the dis- 
turbances.. .may be rendered a valid first approximation near the leading edge.. . 
if the whole field is shifted downstream parallel to the chord for a distance of 
half the leading edge radius of curvature.’ 

Van Dyke (1954, 1959) has derived a more heuristic scheme for rendering the 
predictions of slender-body theory, as to the body-surface velocity distribution, 
uniformly valid to second order. The extraneous singular terms were adjusted 
or removed simply by comparing the formal predictions with exact solutions for 
bodies which approximate the shape of the body under study near the stagnation 
points. If the body shape is given by equations (2.1)) the appropriate comparison 
bodies are two ellipsoids of revolution, one having the same values of a1 and u2 
as does the given body, and the other having the same b, and b,. 

Because of the complexity of the second approximations, we have been able 
to check our formulas with Van Dyke’s only to first order (I). However, there is 
no doubt that the two sets of results are also equivalent in the second approxi- 
mation, since our system for rendering slender-body theory uniformly valid to 
second order could have been derived by a procedure analogous with Van Dyke’s. 
As noted above the present system is based on the introduction of gaps between 
the ends of the source distribution and the stagnation points. To a second approxi- 
mation, a is from equation (3.15) the same for bodies described by equation (2.1) 
as it is for the ellipsoid having the same values of a, and a2, and so could have been 
calculated to order T~ by examining the known exact solution for the ellipsoid. 
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4.3. Comparisons with other solutions 

As implied above, we have checked our results with the exact closed-form 
solution for the ellipsoid of revolution. It is found (I) that our formulas for the 
extent of the source distribution, (3.15) and (3.16), and for the form of the dis- 
tribution, (3.33), are simply the first few terms of the power-series expansions 
in r2 of the exact results. Similarly, our results for the surface pressure distribu- 
tion check satisfactorily with the exact formulas. Numerical agreement between 
the second-order and exact results is, as can be seen from the left half of figure 2, 
excellent. 

The rapid convergence of the successive approximations in the case of the 
ellipsoid does not hold for all body shapes satisfying the restrictions of § 2.1. 
We consider the profile defined by 

~ 2 ( ~ )  = $72[1 - (2x- 1141. (4.1) 

Landweber (1951, 1959) has studied the hydrodynamics of this body in great 
detail. It is somewhat blunter in appearance than is the ellipsoid, but not so 
blunt as is the Rankine ovoid. 

The lengths of the gaps between the ends of the source distribution and the 
stagnation points are readily determined from equations (3.15) and (3.16) 

(4.3) 

Since the first five coefficients of this expansion are positive, we suspect that sub- 
sequent coefficients are also positive. Then there is at  least an upper limit on 
the thickness ratio for which equation (4.2) is applicable, since a and 1 -/j must 
be less than 4. Moreover, examination of the coefficients of equation (4.3) 
suggests that the general term behaves like n! 72n. This implies that (4.2) does not 
converge for any 7 > 0, but is only an asymptotic expansion in 72. Thus the 
example under study illustrates the possibility, noted in 5 4.1, that the successive- 
approximation procedure developed in $5 3.1 and 3.2 may not converge. 

Explicit results for the source strength and for the surface pressure distribu- 
tion are presented in I. One difficulty in computing these results is worth noting. 
The contribution of the logarithmic term infit see equation (3.33), to the second- 
order pressure formula involves an integral which could not be reduced to closed 
form, but had to be evaluated numerically. Similar difficulties should be anti- 
cipated in analysing any body other than the ellipsoid or revolution, in which 
special case the argument of the logarithmic term in equation (3.33) is a constant. 

The first and second approximations to the surface pressure distribution are 
compared in figure 3 with numerical results supplied by A.M. 0. Smith and 
J. L. Hess of the Douglas Aircraft Company. Their computer programme (Smith 
& Pierce 1958) is based on the use of ring sources distributed over the body 
surface. The integral equation for the source strength is approximated by a 
finite number of algebraic equations, which they solve by a numerical iteration 
procedure. In  the present case, they used successively increasing numbers of 
these equations-45, 90, and finally 180-and extrapolated the results so that 
the data on the C, distribution could be guaranteed to -t- 0.0002 over most of 

= 1 - /j = 4 7 2  + s 7 4  + '876 + a 7 8  16 + 13LX710 16 + O(712). 
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the body, and to 5 0.002 near the stagnation points. We may therefore regard 
their results as graphically exact, and use figure 3 to conclude that the second- 
order theory, while considerably more accurate than the first order, is still 
noticeably in error. 

It is of interest to compare the performance of the successive-approximation 
procedure with that of various numerical methods developed prior to the 
Douglas computer programme. Landweber (1951) has computed the pressure 
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FIGURE 3. Comparison of first and second uniformly valid approximations to pressure 
distribution on Landwcber’s body (defined by equation (4.1)) with numerical solution. 
7 = 0.2. 

distribution on the body defined by equation (4.1) with four different numerical 
procedures: one due to von K&rm&n (1927); one due to Kaplan (1935); and two 
due to Landweber (1951), one of which is based on axial doublet distribution, 
while the other uses ring vortices on the body surface. Both of Landweber’s 
methods yield pressure distributions which are indistinguishable graphically 
from the Douglas results, except near the minimum C,, where they differ by 
about 0-01. The von Kkm&n and Kaplan methods do not perform quite as well, 
but are still noticeably more accurate than is the uniformly valid second-order 
theory. 

I n  view of the similarity between Landweber’s axial-doublet-distribution 
method and the present procedure, see QQ3.1 and 3.2, we may conclude that 
acceptable results could have been obtained with our procedure were it carried 
out beyond the second approximation, since Landweber’s results are essentially 
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a fourth-order approximation. This necessity for considering terms whose 
mathematical order of magnitude is quite small, but whose numerical magnitude 
is significant, is typical of asymptotic expansions. 

These comparisons show that the successive-approximation procedure must 
be used with caution, and emphasize the need for a criterion for convergence. 
Although the present analysis has failed to provide such a criterion, it should be 
noted that lack of convergence was suspected for Landweber's body after finding 
the gaps between the ends of the source distribution and the stagnation points. 
Since we have available simple formulas for CI. and (1 -/3) which enable a deter- 
mination of the first five terms of the expansions of these quantities in T ~ ,  examina- 
tion of such expressions might be generally useful for defining cases where the 
technique yields only an asymptotic expansion in r2. 

4.4. Interfereme problems 

We now extend the approach developed in $5 3.1 and 3.2 to a class of unsteady 
interference problems. We still require the body to be shaped as stipulated in 
3 2.1, and the flow at infinity to be uniform. However, we now permit the presence 
of external disturbances moving with respect to the body. We require that these 
disturbances be axisymmetric, and that the singularities with which they are 
associated have a strength of order r 2  and be located a distance large compared 
to r2 from the body under study. 

It is convenient to work in terms of the stream function, which we split up 
as follows: 

The first term is the stream function of a uniform flow, $@) is the stream function 
of the body-bound axial source distribution, and y)(") is the stream function of 
the external singularities. The integral equation governing the body-bound 
source strength, which is now a function f(x, t )  of both location x and time t ,  is 
derived from equation (2.9) in the form 

Yp = 1 ur2 + $W + y)@. (4.3) 2 

(4.4) 

where the kernel K(x, 6) is defined in equation (2.7). 
Within the above restrictions, the most general singularity involved in $(") is 

a ring source of radius r&) and strength Q(t )  = O ( T ~ ) ,  situated in the plane 
x = D(t) ,  where 

(4.5) 

Since the x-axis is a streamline of the flow due to such a singularity, its stream 
function $(e) is constant on the axis. We may arbitrarily set this constant equal 
to zero, so that for small radial distances from the axis 

(4.6) 

where we have retained only the first (largest) term of a Taylor-series expansion. 
But from equations (2.8), (4.6) may be written in terms of the potential $ C e )  as 
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where the result for the axial velocity due to the source ring is taken from 
Sadowsky & Sternberg (1950). Then, from equations (4.5) and (4.7), and the 
restriction that Q = O(r2) 

$@)(x, R(x) ,  t )  = O ( T ~ ) .  

Since the equations (3.1)-(3.6) used to determine a are coefficients in the power- 
series expansion about the nose of the governing integral equation, and since 
we are able to ignore terms of order 74 in the solution of these equations for a, 
equations (4.4) and (4.8) show that the extent of the source distribution is not 
affected by the presence of the external singularities. 

To determine the functional form of f(x, t ) ,  we proceed exactly as in § 3.2. 
An nth approximation to the body-bound source strength is defined as in equa- 
tion (3.35), with f,, = 0. We also find it convenient to define an nth approximation 
to $@), such that on the body surface 

(4.9) 

(4.8) 

$(@(X, n(x), t )  - $ E ) ( X ,  R ( X ) ,  t )  = 0(72n+2). 

From equations (4.8) and (4.9), we may set $6") = 0. 
Equation (4.4) may now be rewritten 

From equations (3.17) and (3.24) this has the solution 

Note that 
(4.11) 
(4.12) 

that is, to a first approximation, the body-bound source distribution is the same 
as if the body were isolated. 

Equation (4.11) is well adapted to the usual interference problem, in which 
$(e) is not specified, but is to be determined such that $(b)+ satisfies some 
condition on a boundary of the flow other than the surface of the body under 
study, e.g. on the surface of a second body, or on a free surface. In  such cases, 
one uses (4.12) to find $Ib), determines $?) such that $ib' + $.I") satisfies the 
external boundary condition to a first approximation, plugs this result into 
(4.11) to find a second approximation for the strength of the body-bound source 
distribution, determines $p) such that $Lb) + $!f) satisfy the external boundary 
condition to a second approximation, etc. Such a procedure has recently been 
employed (Moran & Kerney 1963) to find a solution for the vertical water-exit 
and -entry of a slender body of revolution which satisfies the boundary conditions 
on the body and on the free water surface to second order. 
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Appendix. Determination of second approximation to source strength 
The function defined by equation (3.32) may be written, 

Adding and subtracting the quantity sk-2R2 to the numerator of the integrand 
of equation (A l), and integrating by parts, we obtain the recursion formula 

1 k -1  
H,(x) = , [ ( / ? - Z ) ~ - ' B ( X ) - ( ~ - X ) ~ - ~ A ( X ) ] - - R ~ ( X ) H ~ - ~ ( X )  k (k = I ,  2,  ...), 

where A(x)  = {(x-a)2+R2(x)p, 

U ( X )  = ((/?-2)2+R2(z))k 

From integral tables, 

Then introducing equations (A 3) and (A 5) into (3.31), we obtain 

J ( x )  = @(z) F(x,  /I) - +A(x)  F(z ,  c() - ~ L ( z )  (4R2(x) S"(Z) + O(T6)}, (A 6) 

(ZJ - X)'-'S(~+')(X) + O(T6). (A 7) 
" k + 1  

k.=l k(k + 2 ) !  
- R2(:t) c 

Note that the first term of equation (A 7) may be written 

The terms A ,  B, and L may be simplified as follows. We rewrite (A 3) as 

A(x)  = ((x + a)2 + [R2 - 4ax]}*. (A 9) 

It is readily verified that the term in square brackets is always smaller in order 
of magnitude than (x+a)2 by a factor of 7 2 .  When x a this is obvious, while 
when x = O ( T ~ ) ,  we have, from equations (2.1) and (3.15), 

R2-4ax = a 2 r 2 + ~ a 1 a 2 x + O ( ~ * )  = a , ~ ( . r + a ) + 0 ( 7 ~ )  = ~ ~ ~ [ R 2 - n l ~ ] + 0 ( ~ 8 ) .  
X 

(A 10) 

The last expression is also a valid first approximation when x 9 a, in which case 
it is accurate to order 72. 
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Thus if we factor out (x + a)  from (A 9), the radical is of the form 1 + O(-r2), 
and may be expanded accordingly, 

A(x) = [x+a]+- R2-a1x + 0 ( 7 4 ~ ) .  

2 1  x 1 
Similarlv. 

Now turning to L we rewrite equation (A 5) as 

R2 -1 
where we have made use of (A 3). From (A 11) 

+ 0(r4x)] 
1 R2-alx 

ln{A+x-a} = I n  2x+- [ 2 x  

1 R2-aIx 
4 x2 

= ln2x+- + o(r4). 

A similar relation may be found for the term in (A 13) involving B. Thus we find 

Equation (A 11) may be further simplified to 

1 
2x 

A ( ~ )  = x - a + - R ~ ( X )  + 0 ( ~ 4 4 .  

In similar fashion we find 

___._ - - ___ R2(X) + O(T~) .  R2(a) - R2(x) 
CL-X X 

Then, from equations (A 7), (A 8),  (A 16), and (A 17) 

A(x) P(x,  a )  = S(x) - S(a)  + 

(A 16) 

m 

+ R 2 ( X )  c ____ I C + '  ( -X) X(k+2)(~)+O(3 ,. (A 18) 
k = l  b(lc + 2)! 

The contribution of the B-term to (A6) is of similar form, while that of the 
L-term is quite easily computed with the aid of (A 15). Substituting the resultant 
relation for J into equation (3.29), we obtain the formula for f 2  given in the 
text as (3.33). 
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